RCV array

rreertereee

0 100 200 300 400 500
range (km)

The use of inverse problems in geophysics for
remote sensing with acoustics,
electromagnetics, and gravimetry

Andrew Ganse, Applied Physics Laboratory, UW
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A little bit about me

: ﬁ( coustics

department

Worked at APL for years

' UWEE before returning to school...
“Jim! I’'m a geophysicist, not a mathematician!” undergrad : UW-ESS
(R.L.P. Leonard Nimoy...) BS electrical PhD geophysics
engineering almost 20 years after BS!
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A little bit about APL-UW

Applied Physics Laboratory, University of Washington
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A little bit about APL-UW

Departments within the Applied Physics Laboratory
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Intro to inverse theory via examples

Glacier gravimetry: estimate glacier cross-section from gravity measurements

een=initial estimate; Gray=all models on Lcurve; Red=model for red point on Lcurve prep=e s -
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Global seismic inversion: estimate Earth’s interior wavespeeds & densities from EQ seismograms

Earthquake of MARO2(062),2004 Recorded at BHY
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Intro to inverse theory via examples

Computerized Tomography (CT) scans: estimate 3D body interior densities from Xray atten
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Intro to inverse theory via examples

Ocean bottom (“geoacoustic”) inversion: estimate seafloor properties from sonar in water

°Y
SRC RCV l
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Radio doppler gravimetry of planetary bodies: estimate density of icy moon interiors

Ice Shell, p;




Deduction vs. Induction

Note the common theme in those examples (but there are others):
inferring properties of interior from measurements on an exterior.

predicted data = somefunction( model of interest
_ density(x,z)
graV|ty'(xi) wavespeed(z)
traveltime(depth,)
_ , temperature(z,t)
waveintensity(x; ) chemsrcleakage(t)
dopplerfreq(t;) ote

chemconcentration(x; t))

deduction

“forward problem”

effect cause

observed e.g. ground
measurements . . structure
induction

AP} Ganse “inverse problem”



Probability vs. Statistics

Again the difference between deduction and induction

In these cases it is the latter scenario
that is more often useful in life:
outside situations involving gambling,
we are not normally provided with
theoretical knowledge of the odds but
rather must estimate them after
making a series of observations.
Scientists, too, find themselves in this
position: they do not generally seek to
know, given the value of a physical
quantity, the probability that a
measurement will come out one way or
another but instead seek to discern the
true value of a physical quantity, given
a set of measurements.

I have stressed this distinction
because it is an important one. It
defines the fundamental difference
between probability and statistics: the
former concerns predictions based on
fixed probabilities; the latter concerns
the inference of those probabilities
based on observed data.

- Leonard Mlodinow | veunicres
welk

The Drunkard’s Walk | ..

Rules @ur

(highly recommended!) | ...
v

deduction

VAN

“forward problem”

effect

observed
measurements

induction

cause

e.g. ground
structure
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“inverse problem”



Analytical inversion

CT scans and the Inverse Radon Transform

Sortof an exception here — most real-world problems are too UNSTABLE for this approach...

Body densities x(.) at internal locations;
X-ray attenuation measurements )/(.)
at locations around the circular perimeter:

y0.0) = [ a(ab,6)da

27 o0
) — /0 /_ £ ly(, 6),b, 6, u, ] db do

)

Rohler & Krishnaprasad, 1980

RAYS EQUALLY
SPACED ALONG
THESE LINES

@ Ganse UW Math inv probs seminar: http://www.math.washington.edu/Seminars/IP



Model space vs. data space

* We wish to invert an integral equation :

d(s) = /g(s,x)m(x)dm > m(z) =...7

(“Fredholm integral equation of the second kind”)

m(z) = the “model” (e.g. as in “Earth model”)

d(s) = the “data” (measurements)

g(s,a:) = the “kernel” function

Most real-world problems are too UNSTABLE for analytical approach...
What does that mean?




Stability

* We wish to invert an integral equation :

d(s) = /g(s,w)m(x)dw > m(x) =...7?

(“Fredholm integral equation of the second kind”)

Simple special case where data space is same as model space — curve fitting: s =Xx

A smoothing mechanism : think of g(x,x) as boxcar functions = running average

10

m(x)

4w °F

5_

Big fluctuations in m(x) get turned into small fluctuations in d(s).
In the inverse, small fluctuations in d(s) get turned into big fluctuations in m(x).




Uncertainty

Noise on the data maps into uncertainty in the estimated model.

d(s) = / o(s, 2)m(@)dz —— d(s;) = / o(s5.2) m(z)dz + €(s;)

A smoothing mechanism : think of g(x,x) as boxcar functions = running average




Non-uniqueness
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uh-oh, infinitely many curves produce predictions that fit the same data to within the noise

@ Ganse



Inversion via optimization/parameter estimation

Geophysical problem :

4 = [ gia) m(a)ds +

Parameterize m(x) to turn the inverse problem into a parameter estimation :

m(x) = ij bj(z) > d; = Gz’j m; + €;
J

(but still must worry about existence, stability, uniqueness, and uncertainty)

Approach: instead of trying to derive somefunction-!(model)
from predicted _data = somefunction(model),
we tweak model until predicted_data is close to measured data




Rank deficiency and ill-posedness

Define “objective function” objf(m) as a distance between the
measured and modeled data. (i.e. sum of squares of differences)

objf(m;,m,,..) =
ob f(g) B 2 . 2
N (predicted_data(m;,m,,..) - measured_data)

~

Need for reqularization — adding information — via model constraints or prior probabilities




Frequentist vs. Bayesian probability

A debate raging for 200+ years in the prob/stats community!

* Frequentists define probability in terms of frequency of repeatable events.
So one can’t know anything about model before the event/experiment.
Regularization takes form of model constraints, so not solving same problem as
you started with (e.g. solving for a smooth version of true model).

* Bayesians define probability in terms of degree of belief.
So one can know about the model before the event/experiement.
Regularization takes form of prior probabilities for the model parameters;
so you ARE solving same problem started with, maybe get prior via other meas.




Frequentist inverse problem concepts

* A common approach is solving some smoothed problem — so it’s not same
problem you started with — then stating amount of smoothing with the results.
But key is data/noise can automatically determine the amount of smoothing.

e Occam’s Razor rationale — this results in fewest number of features in model
that aren’t required by the data.

* Trade-off between uncertainty & resolution of model solution — no free lunch:
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Bayesian inverse problem concepts

* Bayes' Rule: (from definition of conditional probability)

-4 i

“posterior ” distribution “data likelihood ” “prior ” distribution of
of model parameters function model parameters

* End result is a probability density function of model parameters.

* Unlike frequentist case, no uncertainty/resolution trade-off here — the prior
PDF is simply updated to the posterior PDF using the information in the data.




Case #|. Acoustic oceanography / VWPRM

(with Rex Andrew, Andrew White, Jim Mercer, APL-UW; & Worcester et al., SIO)

Ocean soundspeed mainly a function Long-range sound rays propagating in SOFAR waveguide —
. of temperature and pressure : SRC travel time affected by soundspeed variations RCV array
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#2. Estuarine salinity monitoring via

WA State’s Bellingham & Samish Bays:
monitoring contaminated freshwater runoff
onto shellfish habitats

Sudden Vally
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Saanich

Victoria

CA’s Sacramento-San Joaquin River Delta:
monitoring tidal salt wedge intrusions re
habitat/endangered-species restrictions on
municipal supply pumping
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E-fields at
different
frequencies

have different
skin depths,
covering different
spans of the
water column.

So invert G(f) to
obtain o(z).

Data:
E-field
strength
time-series
at different
frequencies

Model:

Inverted electrical £
conductivity g
profiles as g
function of depth g
& time.
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#3. Experiment-design/mission-planning for
EU rOPa CIIPPer’ gr’aV|metr')/ (with Steve Vance, JPL & James Roberts JHU-APL)

Interest in H20 layer features like seamounts, diapirs,
melt pockets — what could Clipper resolve where?

45 orbits in proposed Europa Clipper mission

@ Ganse

strong evidence for ocean/ice layer

Metallic Core Ice Covering

/
/
Rocky Interior \

\ Liquid Ocean Under Ice
H,0 Layer

detection thresholds vs.
what can actually be resolved
from the measurements...
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Rather than inverting data (no spacecraft yet!), here
we estimate where the best quality inverse solutions
would be for proposed spacecraft trajectories.
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Inverse theory class: ESS 523

A graduate-level class, but open to undergrads (maybe senior year is best) without research requirement.

Contact Professor Ken Creager, ESS-UW.

* Overall: learn how to do linear problems, then set up your nonlinear problem as a
sequence of linear ones. (Note this presentation didn’t discuss nonlinear problems.)

* Extensively uses Matlab or Octave (free/awesome GNU clone of Matlab) for a set
of wonderful computational labs demonstrating key concepts. 0k ok ok -1 wrote the labs. ;-)

* Recommended Prerequisite background:

* Basic probability & statistics concepts -
* e.g. mean, std dev, variance, covariance, correlation

* Linear algebra -
* e.g. matrix/vector arithmetic, transpose, inverse, null space, rank, condition
number, eigenvalues/vectors, under/over-determined probs

* Fourier transforms (time/space «- frequency)
* Some idea of connection between the class and your research

* No tests, but weekly homework and labs, and a class project based on your
research



Shameless plug

http://staff.washington.edu/aganse
(also linked via APL directory)

Geophysical inverse theory educational resources

Inverse Theory Resources
Andrew A. Ganse, Applied Physics Laboratory, University of Washington, Seattle

Introductory material,
:'ovl.'v'e A growlng list of recommended textbooks and helpml papers, Q&A list, related web links, and lecture notes, all textbook Summaries’

on aspects of geophysical inverse theory...
Current Research

R recommended reading and links,
LS SR « A Conceptual to Inversion, by Andrew Ganse, 12Mar2012. PDF file, presented in the UW Earth & Space teaChlng Iabs In process Of belng

Side Interests. Sciences brown bag series. No math in this one, just an overview level talk, basically the graphical version of the primer below.
[~ «AGeophysical Inverse Theory Primer, by Andrew Ganse, draft 31Mar2008. This document (PDF file) is ten pages long, contains no u ra ded
My Bookshelf equations, and aims to provide an overview of the main concepts in inverse theory. By giving a summary at a high-level, the goal is to pg e

introduce the subject to the new user, and place the different concepts and solution methods in perspective with each other before
delving into mathematical details.

Blog « An introduction to geophysical inversion, with comparisons to analytical inversion, by Andrew Ganse, 170ct2007. Powerpoint file,
SR presented on invitation to the UW Math Dept Inverse Problems seminar series, posted here on request of several colleagues. Many
more equations than above; you would definitely want to start with the above primer first if you are new to inverse theory.

Texthoola: (This page is also linked from

These are a subset of the books listed on my Bookshelf page. Note the (A B P U) links at the end of each synopsis are links to the book th Wk H d H “I P b/ 7
in each of the following online bookstores when available: Amazon, Barnes & Noble, Powell's Books, and the University of Washington e I Ipe Ia n Verse ro e‘ ’ ]S

Bookstore. (Please click book images in the carousel to select brief paragraph overviews of each book.)

Downloads

arameter Estimation and Inverse Problems, by

Aster, Brian Borchers, & Clifford Thurber. For Geophysical Inverse Theory, by Robert L. Parker. A
beginners to inversion, I strongly recommend this book above classic frequentist text that is very readable - Parker is rigorous
other inverse theory textbooks; there are plenty very useful and introduces the reader to functional analysis concepts, but
books on the topic, but this one really gets you up to speed in the injects witty tidbits here and there which keep you interested.
subject fast with great hands-on Matlab examples. Then, after This book focuses on the Gram matrix / representers technique,
you're more familiar with the material, go back and reread the which parameterizes the model with the same number of
book again - there are tons of handy comparisons between parameters as there are data points, and requires numerical

Some examples: Labs consist of lecture notes + technical/programming assignment (for which example code exists):

Labs 4 & 5: Parameter estimation of EQ Lab 6: explore linear inversion with
source location, and objective surfaces smoothing regularization via curve fitting, New lab: adapting Parker’s glacier

Path and 95% confidence ellipse for Gauss-Newton estimation (vp=1‘5kmls) Compare to CUbIC Spllne graV/metfy examp/e (eStlmate bed lnterface)
10

Greens=initial estimate; Gray=all models on Lcurve; Red=model for red point on Lcurve
0

km north

depth h(x) [m]

original "true” curve |
-40 Matlab spline fit 1000 ‘ |
our smoothest curve ‘
® __data points ‘ ’—L_‘
‘ ‘ ‘ : ‘ ‘ / A meas stns
-1 -08 06 -04 02 o 02 04 06 08 1 1200 . L L | |

0 0.5 1 1.5 2 25 3
cross range x [km]




Another shameless plug

http://staff.washington.edu/aganse

(also linked via APL directory)

Tracking filters like Kalman filter are inverse problems with dynamics-based regularization

Nonlinear Filtering Examples from Gelb

Andy Ganse, Applied Physics Laboratory, University of Washington, Seattle

Home

C.V.

Current Research & Pubs

Publications & Abstracts
Filter examples
Inverse Theory Resources
Side Interests
My Bookshelf
Downloads
Goofy Stuff

Home / Current Research & Pubs /

A Matlab script to recompute the nonlinear tracking filter examples
6.1-3 in Gelb

My inverse theory research relies on concepts from recursive filters, so I had to take some tim¢g
speed on those. A classic textbook for this is Applied Optimal Estimation, editted by Gelb (1974
of that book are two simple radar tracking examples (6.1-2 and 6.1-3) which demonstrate sev{
filters. I've programmed up those examples into a Matlab script called gravdragdemo.m and adq
filters to compare and contrast them in both linear and nonlinear cases.

These examples use radar ranging to estimate the elevation, downward velocity, and drag coefi
falling body as functions of time. These three values are collected into a 3x1 vector called the s|
again a function of time. The two examples are related: example 6.1-3 has a 2D arrangement

nonlinear measurements with respect to x. Example 6.1-2 is a special case of 6.1-3 in which tH
collapsed to 1D by letting r1 and rp shrink to zero, causing the measurement relation to becom

B e —
- g
"

Redravm from figure 6.1-5, Applied Optimal Filter, ed. Gelb,
The Analytic Sciences Carporation. 1994

respect to x. The dynamics of both examples in the book are nonlinear because they include ai

drag (X3), T

which depends on velocity (x2)|

5L!(F-c:ym. EKF=blue, EKF2=green

5
measurements case) and exan| . .
400!
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Fortunately, not too many shameless plugs...

http://staff.washington.edu/aganse
(also linked via APL directory)

Some of the wave propagation concepts | referred to are easily explored by playing with this

Seismic/Cartesian Raytrace Applet (Small)
Andy Ganse, Applied Physics Laboratory, University of Washington, Seattle

Home / Side Interests / Misc/ Raytrace Java Applet / Small Size /

Home
C.\. Seismic Raytracing Java Demonstration Applet (Cartesian coordinates)
Current Research & Pubs Please allow a few moments for the applet to download and for Java to initialize...
Once it's running you can click the green question mark for a brief help listing.
Inverse Theory Resources Don't see an applet coming up after a long time, or having difficulty with the applet freezing up? The most likely culprit is that

our Java plug-in is too old - go update yourself at java.sun.com/getjava.
Side Interests Y plug go up y i /geti

Helioseismology

:::pa & Icy Moons E; W @ . 77 2

Raytrace Java Applet IWGVOYOI vs lDQP“? . : . = .—-——:—.

Fault Gravimetry or i or 'E

Office Astronomy i X | i %‘

Beamforming g = N g - = ;

Multi-phase linear regr. lt’ 10t i ‘t) 10t _E

Pythagorean proof h h :

My Bookshelf (sr .l (s} E
R m \ m I W

 Enter wave velocity profiles and watch the rays go!
* Spherical geometry one available too...
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Recommended reading

Really fantastic popular book re probability and statistics:
The Drunkard’s Walk,
by Leonard Mlodinow

My website (of course!) — pages on inverse theory resources,
linear and nonlinear filter tutorial, ray-tracing, and much more.
http://staff.washington.edu/aganse

The best frequentist inverse theory textbook:
Parameter Estimation and Inverse Theory,
by Aster, Borchers, Thurber

The best Bayesian inverse theory textbook:
Inverse Problem Theory and Model Parameter Estimation,
by Albert Tarantola (available free online!)



